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INTRODUCTION

The splines to be investigated are defined on (- 00, (0) with uniformly
spaced nodes at the points Xi = jh (j = 0, ±l,...), h being a positive number.
These splines have been considered recently, [1], [2], [3], particularly for the
case h = 1. A number of years earlier, they were also investigated in [4]. In
[2], [3], existence as well as a number of optimal properties with respect to
various norms are established. The present paper proceeds, however, along
the lines of [1] and extends the results obtained there for cubic splines to
polynomial splines of odd degree. Convergence properties, as h tends to zero,
are also investigated.

If the spline in question is of degree n, where n is odd, then with relatively
mild restrictions on a set of real numbers {fj}(j = 0, ±l,...), it is shown that
there is a unique spline, Sh(X), with the interpolation property

(j = 0, ±I,...) (I)

whose (n - l)th derivative is bounded. It is essentially this result that is
utilized to establish the indicated convergence properties. Moreover, certain
"damping" properties are established that point up the "local" character of
spline approximations and are also useful in analyzing convergence. Due to
the absence of diagonal dominance in the significant matrix, the methods of
[I] do not generalize. The circulant nature ofthe matrix permits, however, an
application of the theory of doubly-infinite Toeplitz matrices to fill this gap.

* This work was supported by the Office of Naval Research Contract Nonr 562(36)
with Brown University.
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FUNDAMENTAL EQUATIONS
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If Sh(X) is a spline of the type under investigation, of degree n, where n is
odd, let it = (n - 1)/2. Then, as in [5], we can establish that

ii
n! (n - 1)! Sh[Xi-ii ,..., Xi+ii] = L Cin) s~n-l)(Xi+j), (2)

j=-;,

where the coefficients Cin) are the same as those arising in the periodic case
for a spline of the same degree and uniformly-spaced nodes. We shall later
consider these coefficients in greater detail. Let M i = s~n-l)(Xi)' Then for
Xj-l :s;: x :s;: Xj we have

S(n-l)( ) = M. (x - Xj-l) + M. (Xj - x)
h X ) h )-1 h '

Now, let

Q ( ) = x
n

M 1 - M o
oX n! h .

Then there exists a polynomial, Pn-l(X), of degree n - 1 such that

(3)

(4)

(5)

(6)

Furthermore, if

then, for j > 0,

(7)

Sh(X) = Qo(x) + Ql(X) + ... + Qix) + Pn- 1(x),

Xj :s;: X :s;: Xj+l . (7)

In a similar fashion we can represent Sh(X) for x < O.
Suppose thatj; (j = 0, ±1,...) are given and for any even integer fJ let

LJ8/i be the fJ-th central difference formed from thej; and centered at/i . In (2)
replace (n - 1)! Sh[Xi_ii ,..., xi+ ii] by (LJn-l/i)lhn- 1 with the result

ii
h-n+ln! LJn-I[; = L Cj(n) M i+j .

j=-n

(2/)
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Also assume for the moment that we can solve the resulting system of equa­
tions for Mij = 0, ±1,...). Using these quantities, form Qo(x), Qi(x), ... and
their counterparts for x < O. Finally, determine the coefficients of Pn-1(X) so
that Sh(X) will interpolate to jj at xij = 0, 1, ... , n - 1). If, for every integer
j, we let Ij = Sixj), then Ij = jj(j = 0, 1,... , n - 1). To show that Ij = jj
for every j, observe that the quantities M j satisfy equations (2'), with iJ n-1/i
in place of iJn-lj; . It follows that there exists a polynomial P(x) of degree
n - 2 such that

(j = 0, ±1,...). (8)

However, since P(Xi) = 0 for j = 0, 1,... , n - 1, it follows that P(x) is
identically zero. Thus, Ij = jj for every j. Consequently, if for a given set
jj(j = 0, ±1,...) the quantities M j are determinable, then Six) is uniquely
determined.

We must now show, however, that the last hypothesis is actually fulfilled,
i.e., if (for instance) the quantities h-n+1iJ n-lfj are bounded they uniquely
determine the quantities M j • We shall do more than this; indeed we shall
show that the doubly-infinite circulant matrix

(9)

has an inverse which is bounded in the row-max norm.

Hille Polynomials. Hille, [6], introduced a family of polynomials, Pn(z, a),
while investigating holomorphy-preserving transformations. The special
case where a = 1 has already proved useful in spline theory, [7]; we shall
make further use of them presently.

For a = 1, these polynomials are defined by

n-1

Pn(z, 1) = z I ankzk,
k~O

where the coefficients ank satisfy the recursion relations

(10)

ano = an-1.0 = ... = a10 = 1,

ank = (k + 1) an- 1.k + (n - k) an- 1.k-1

an,n-1 = an-l,n-2 .

(k = 1, 2,... , n - 2), (11)



POLYNOMIAL SPLINES ON THE REAL LINE

It follows from these relations that

In tabular form, we have for the initial part of the array:

TABLE 1

Spline Coefficients

~ 0 2 3 4 5 6

1 1
2 1
3 4 1
4 11 11 1
5 26 66 26 1
6 57 302 302 57 1
7 120 1191 2416 1191 120

401

(12)

As a consequence of (12), the zeros of Pn(z, 1) occur in reciprocal pairs,
with the exception of 0 and -1. In [7] they are shown to be distinct, real and
non-positive. Moreover, for n odd, -1 is not a zero, but, for even n, it is.
These facts are sufficient for our purposes. It remains to relate these poly­
nomials of Hille to our current investigation of polynomial splines of odd
degree. The relation is that, for n odd,

Ck(n) = an,ii+k (I k I <; ii),

Ck(n) = 0 (/ k I > ii).

TOEPLITZ MATRICES

(13)

The circulant matrix C(n) in (9) is known as a doubly-infinite Toeplitz
matrix. In general, if

then the matrix

00

c!>(()) = L CkeikB

k=-OO
(i = v=T), (14)

C"c~: Co C1 C2 C'")... C-2 C-1 Co C1
C

2
...

... C-3 C-2 C_1 Co C
1

...
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is denoted by T<I> . Thus, T<I> is completely determined by the Fourier coeffi­
cients of cP and vice versa. The following theorem can be found in [8] and is
essential to our analysis.

THEOREM. A necessary and sufficient condition that T<I> be invertible is that
1/ cP be essentially bounded. In this case we have

(15)

In order to apply this theorem to the problem at hand, we substitute
z = ei8 in

w(z) = Z-ii-1Pn(Z, 1)

and denote the result by Qn({J). Thus, in view of (13),

co

Qn(8) = I Ck(n) eik8
•

k~-co

(16)

(17)

Consequently, since Pn(z, 1) has no zeros on the unit circle for n odd, we have

(18)

It follows that T(/ exists and the coefficients ak of this inverse matrix are
given by n

(k = 0, ±l,...), (19)

where Pn(8) = Pn(e i8, 1). These arguments establish the following

THEOREM 1. The matrix C(n) defined by (9) has an inverse whose defining
coefficients ak(k = 0, ±l,...) are square summable.

This theorem is not, however, entirely satisfactory for our purposes. We
would like to have not only

but also
co

I I ak I < 00,
k=-co

(20)

(21)

i.e., that the inverse matrix TQ~ is bounded in the row-max norm. We now
focus our attention on this problem.
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DAMPING PROPERTIES
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As we have seen, To\ as a linear operator, is bounded in the Hilbert space
sense. In order to see that it is bounded with respect to the row-max norm,
we need the following well-known result.

THEOREM. If ep(O) and its first p - 1 derivatives are continuous and the
p-th derivative is of bounded variation, the asymptotic behavior of the Fourier
coefficients, A k , ofep(x) is given by

Moreover,

k~ 00. (22)

(23)

To apply this theorem to our problem, observe that Ifrp(O), as a function
of 0 on [-TT, TTl, is analytic. Consequently, we have the following

THEOREM 2. The matrix To has an inverse which is bounded with respect
to the row-max norm. Furtherm~re,for every positive integer p, we have

ak = 0 ( k;+1 ), k~ 00, (24)

and

I I ak I = 0 (--h-), ko~ 00. (25)
Ikl>ko 0

Although the theorem just established gives rather strong decay properties
for the coefficients ak determining To\ as k ~ 00, it is not the best possible
result. It turns out that we can dete;mine the coefficients ak explicitly and
make an even stronger assertion concerning their asymptotic behavior.
From (19) we have

__1_ I" eik8eiii8iei8 dO
a-k - 2TTi _" Pn(O)

I I ZkHi
= -2. P ( 1) dz.

TTl Izl-1 n Z,

(26)

It follows that a_k is the sum of the residues of (zk+flIPn(z, 1)) within Iz I = 1.
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Let Xi (j = 0, I, , ii) denote the zeros of Pn(z, I) within I z I = I and let°= Xo > Xl > > -I. Since the function

(27)

is the quotient of two holomorphic functions and since Pn(z, I) has only
simple zeros, the residue at Z = Xi (j = 0, I, ... , ii) is

Thus, in view of (12) and (13),

(28)

and we are led to the following

THEOREM 3. The coefficients ak defining TQ~ are given by (28), and

ak = 0(1 Xii Ilkl)

as I k I ---+ 00.

UNIFORM CONVERGENCE

We have previously established that C(n)-l exists and is bounded with
respect to the row-max norm. Let

ao(n) al(n)
a_len) ao(n)
a_2(n) a_len)

.a~(~)' ~3(n; )
al(n) aln) .

ao(n) al(n)'"
........

(29)

Then there exists a constant M such that

ro

L I aln)1 < M.
j=_OO

From (29) and (2') we have

ro LIn-II'. .
M - ,,, () Jt+,i-no ~ ai n hn - l

i~-ro

(30)

(31)
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It now follows that ifj(x) has a bounded and continuous (n - l)th deriva­
tive on (-00,00) andfi =f(jh) (j = 0, ±1,...), then

00

M i = n! L a;(n)j(n-l)(gi+j),
j=-CIJ

where Xj_ii ~ gj - Xi+ii . Moreover, due to the circulant nature of (29),

00

I M i - M k 1~ L I a;(n)I Ipn-l)(gi+i) - j(n-U(gi+k)!
j=_OO

~ Mw(f(n-l); (I i - k I + n)h),

(32)

(33)

where w(g; 0) is the modulus of continuity of g(x). Now, in [6] it is shown
that

hence, from (2') we obtain

L C;(n) = n!;
j=-n

(34)

so that

(35)

Thus, from (35), the linearity of Sh(n-l)(x), and the triangle inequality, we
obtain the following

THEOREM 4. Let j(x) have a bounded and continuous (n - l)th derivative
on (-00, 00). Then

s~n-l)(X) -+ j<n-l>(x)

uniformly, as h -+ 0, and

I s~n-l)(x) - j<n-l)(x)1 = O{w[j(n-ll; inh]},

where Sh(X) is the spline ofinterpolation to j(x) at the nodes

Xj = jh(j = 0, ±l,oo.).

(37)

(38)

Using Rolle's theorem and simple quadratures repeatedly, we obtain the
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COROLLARY. Under the conditions of Theorem 4,

S~"')(x) - j<"')(x) = 0(hn-1-"'w(j(n-l), !nh)) (39)

for ex = 0, 1,... , n - 1.
Suppose now thatfln)(x), as well, is bounded and continuous on (-00,00).

Then, letting N j = s~n)(x) for Xj_l < x < Xj and using (4), we obtain by
differencing (2') for consecutive values of the index i and dividing by h (we let
this process define J nj;):

, Jnj; _ ~ C ( ) N
n. hn - L. jn Hj'

j--n

(40)

Consequently, we can repeat the proof of Theorem 4 virtually unaltered and
obtain

THEOREM 5. Let f(x) have a bounded and continuous n-th derivative on
(-00, 00). Then

(41)

uniformly, as h ---+ 0.
We also have

COROLLARY 1. Under the conditions of Theorem 5,

I s~"')(x) - f("')(x) [ = O(hn-"'w(j(n); (in + l)h)) (42)

for ex = 0, 1,... , n.
If f(n)(x) is absolutely continuous, we have

w(j(n); 0) = sup 1 [11 pn+l)(t) dt I,
I"'-1Ip,;;a Y",

from which the following corollary is evident.

(43)

COROLLARY 2. Under the conditions of Theorem 5 and the additional
assumption that f(n+])(x) is bounded and continuous,

(44)

for ex = 0, 1,... , n.
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LOCAL CONVERGENCE

We now consider the local behavior of spline approximations. Let

wig; 8) = {YII~~:R<6} I g(X) - g(y)!,

407

(45)

so that wig, 8) is a local modulus of continuity for g(x) depending only on
the behavior of g(x) in a 8-neighborhood of x. Suppose that j<n-IJ(x) exists
and is bounded on ( - ex), ex). Then

co LIn-IF
Sln-1J(x.) M. = n! I a (n) Jk+j

h 1 1 k~-co k hn - l

00
= n! I ak(n) !<n-1J(gk+j)

k~-OO

(46)

00 00
= n! I ak(n)!<n-1J(x j) + n! I ak(n)[fin- 1J(gk+) - j<n-l)(xj»),

k~-OO k~-OO

where Xk - ii :(: gk :(: Xk + ii. From (34) it follows that

(47)

consequently,

00
M j = !<n-I)(Xj) + n! I ak(n)[f(n-1J(gk+j) - j<n-1J(Xj»). (48)

k=-oo

But,

I f: ak(n)[f<n-1J(gk+j) - !<n-IJ(Xj»)!
k~-oo

N

:(:; I Iak(n)! wXj(f<n-IJ; (N + n)h) + 211!<n-IJ 1100 I Iak(n)l, (49)
/o;~-N Ikl>N

where

II gila> = sup Ig(x)l.
x

(50)

From (48), (49) and the linearity of s~n-l)(x) between nodes, we are led to the
following
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THEOREM 6. Let j(x) have a bounded (n - I)-th derivative on (- 00, (0)
and let wx(f<n-1l; 0) - 0 as 0 - O. Then

s~n-lJ(X) _ j<n-l)(x)

as h-O, and

N

I s~n-l)(x) - j(n-l)(x)! ~ L I ak(n)! wk(f(n-lJ; (n + N)h)
k=-N

+ 21Ij<n-lJ 1100 L Iak(n)l.
k>N

(51)

(52)

Observe that since I ak [ = O(r~), as k - 00, the second term converges to
zero rapidly as N - 00, and for a fixed N, the second term converges to
zero as h - O. If we let N> [ In hi, then the first assertion follows. We
also have the

COROLLARY. Under the conditions of Theorem 6,

I S~J(x) - j(<x)(x)! ~ hn-1-<x IS~-l(X)- j<n-l)(x)! (53)

for <X = 0, 1,... , n - 1.
As before, if j(nJ(x) exists and is bounded on (-00, (0), we obtain the

following results.

THEOREM 7. Let j(x) have a bounded n-th derivative on (-00, (0) and let
wx(f(nl; 0) - 0 as 0 - O. Then

(54)

as h-O, and

N

I s~n)(x) - pnJ(x)1 ~ L Iain)[ wxC/(n); (n + N + 1)h)
k=-N

+ 21Ij<n) 1100 L Iak(n)l.
k>N

COROLLARY. Under the conditions of theorem 7,

(55)

for <X = 0, 1,... , n.
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If jln+1l exists and is bounded in a neighborhood of x, we can replace (56)
by

N

[S<:>(x) - jl~>(x)[ ~ hn+1-~ sup [f<n+1>(Y)1 L Iain)1
{ylly-xl < <n+l+N>h} k~-N

+ 2hn-~ [If<n> [I", L I ain) [
k>N

for IX = 0, 1,..., n.
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